Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biomater Sci ; 12(7): 1822-1840, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38407276

ABSTRACT

Combinations of the topoisomerase II inhibitor doxorubicin and the poly (ADP-ribose) polymerase inhibitor olaparib offer potential drug-drug synergy for the treatment of triple negative breast cancers (TNBC). In this study we performed in vitro screening of combinations of these drugs, administered directly or encapsulated within polymer nanoparticles, in both 2D and in 3D spheroid models of breast cancer. A variety of assays were used to evaluate drug potency, and calculations of combination index (CI) values indicated that synergistic effects of drug combinations occurred in a molar-ratio dependent manner. It is suggested that the mechanisms of synergy were related to enhancement of DNA damage as shown by the level of double-strand DNA breaks, and mechanisms of antagonism associated with mitochondrial mediated cell survival, as indicated by reactive oxygen species (ROS) generation. Enhanced drug delivery and potency was observed with nanoparticle formulations, with a greater extent of doxorubicin localised to cell nuclei as evidenced by microscopy, and higher cytotoxicity at the same time points compared to free drugs. Together, the work presented identifies specific combinations of doxorubicin and olaparib which were most effective in a panel of TNBC cell lines, explores the mechanisms by which these combined agents might act, and shows that formulation of these drug combinations into polymeric nanoparticles at specific ratios conserves synergistic action and enhanced potency in vitro compared to the free drugs.


Subject(s)
Antineoplastic Agents , Nanoparticles , Phthalazines , Piperazines , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/metabolism , Reactive Oxygen Species , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Drug Combinations , Cell Line, Tumor
2.
Biomater Sci ; 11(19): 6545-6560, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37593851

ABSTRACT

The therapeutic efficacy of nanomedicines is highly dependent on their access to target sites in the body, and this in turn is markedly affected by their size, shape and transport properties in tissue. Although there have been many studies in this area, the ability to design nanomaterials with optimal physicochemical properties for in vivo efficacy remains a significant challenge. In particular, it is often difficult to quantify the detailed effects of cancer drug delivery systems in vivo as tumour volume reduction, a commonly reported marker of efficacy, does not always correlate with cytotoxicity in tumour tissue. Here, we studied the behaviour in vivo of two specific poly(2-hydroxypropyl methacrylamide) (pHPMA) pro-drugs, with hyperbranched and chain-extended branched architectures, redox-responsive backbone components, and pH-sensitive linkers to the anti-cancer drug doxorubicin. Evaluation of the biodistribution of these polymers following systemic injection indicated differences in the circulation time and organ distribution of the two polymers, despite their very similar hydrodynamic radii (∼10 and 15 nm) and architectures. In addition, both polymers showed improved tumour accumulation in orthotopic triple-negative breast cancers in mice, and decreased accumulation in healthy tissue, as compared to free doxorubicin, even though neither polymer-doxorubicin pro-drug decreased overall tumour volume as much as the free drug under the dosing regimens selected. However, the results of histopathological examinations by haematoxylin and eosin, and TUNEL staining indicated a higher population of apoptotic cells in the tumours for both polymer pro-drug treatments, and in turn a lower population of apoptotic cells in the heart, liver and spleen, as compared to free doxorubicin treatment. These data suggest that the penetration of these polymer pro-drugs was enhanced in tumour tissue relative to free doxorubicin, and that the combination of size, architecture, bioresponsive backbone and drug linker degradation yielded greater efficacy for the polymers as measured by biomarkers than that of tumour volume. We suggest therefore that the effects of nanomedicines may be different at various length scales relative to small molecule free drugs, and that penetration into tumour tissue for some nanomedicines may not be as problematic as prior reports have suggested. Furthermore, the data indicate that dual-responsive crosslinked polymer-prodrugs in this study may be effective nanomedicines for breast cancer chemotherapy, and that endpoints beyond tumour volume reduction can be valuable in selecting candidates for pre-clinical trials.


Subject(s)
Prodrugs , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Polymers/chemistry , Tissue Distribution , Triple Negative Breast Neoplasms/drug therapy , Doxorubicin/chemistry , Cell Line, Tumor , Drug Carriers/chemistry
3.
Nanomedicine ; 48: 102643, 2023 02.
Article in English | MEDLINE | ID: mdl-36584739

ABSTRACT

Chemoradiotherapy with controlled-release nanocarriers such as sono-sensitive nanodroplets (NDs) can enhance the anticancer activity of chemotherapy medicines and reduces normal tissue side effects. In this study, folic acid-functionalized methotrexate-loaded perfluorohexane NDs with alginate shell (FA-MTX/PFH@alginate NDs) were synthesized, characterized, and their potential for ultrasound-guided chemoradiotherapy of breast cancer was investigated in vitro and in vivo. The cancer cell (4T1) viabilities and surviving fractions after NDs and ultrasound treatments were significantly decreased. However, this reduction was much more significant for ultrasound in combination with X-ray irradiation. The in vitro and in vivo results confirmed that MTX-loaded NDs are highly biocompatible and they have no significant hemolytic activity and organ toxicity. Furthermore, the in vivo results indicated that the FA-MTX/PFH@alginate NDs were accumulated selectively in the tumor region. In conclusion, FA-functionalized MTX/PFH@alginate NDs have a great theranostic performance for ultrasound-controlled drug delivery in combination with radiotherapy of breast cancer.


Subject(s)
Breast Neoplasms , Nanoparticles , Humans , Female , Breast Neoplasms/drug therapy , Methotrexate/pharmacology , Cell Line, Tumor , Chemoradiotherapy , Alginates , Ultrasonography, Interventional
4.
Talanta ; 228: 122245, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33773745

ABSTRACT

Dual-modal molecular imaging by combining two imaging techniques can provide complementary information for early cancer diagnosis and therapeutic monitoring. In the present manuscript, folic acid (FA)-functionalized gadolinium-loaded nanodroplets (NDs) are introduced as dual-modal ultrasound (US)/magnetic resonance (MR) imaging contrast agents. These phase-change contrast agents (PCCAs) with alginate (Alg) stabilizing shell and a liquid perfluorohexane (PFH) core were successfully synthesized via the nano-emulsion method and characterized. In this regard, mouse hepatocellular carcinoma (Hepa1-6) as target cancer cells and mouse fibroblast (L929) as control cells were used. The in vitro and in vivo cytotoxicity assessments indicated that Gd/PFH@Alg and Gd/PFH@Alg-FA nanodroplets are highly biocompatible. Gd-loaded NDs do not induce organ toxicity, and no significant hemolytic activity in human red blood cells is observed. Additionally, nanodroplets exhibited strong ultrasound signal intensities as well as T1-weighted MRI signal enhancement with a high relaxivity value of 6.40 mM-1 s-1, which is significantly higher than that of the clinical Gadovist contrast agent (r1 = 4.01 mM-1 s-1). Cellular uptake of Gd-NDs-FA by Hepa1-6 cancer cells was approximately 2.5-fold higher than that of Gd-NDs after 12 h incubation. Furthermore, in vivo results confirmed that the Gd-NDs-FA bound selectively to cancer cells and were accumulated in the tumor region. In conclusion, Gd/PFH@Alg-FA nanodroplets have great potential as US/MR dual-modal imaging nanoprobes for the early diagnosis of cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Nanoparticles , Animals , Carcinoma, Hepatocellular/diagnostic imaging , Contrast Media , Folic Acid , Gadolinium , Liver Neoplasms/diagnostic imaging , Magnetic Resonance Imaging , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...